Quadratic spaces and quaternion algebras
Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 110-120

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the existence of a nontrivial quaternion algebra over a field $F$ of characteristic not equal to 2 implies the existence of quadratic $F[X_1,\dots,X_n]$-spaces ($n\ge2$) which are not extensions of $F$. Bibl. 11 titles.
@article{ZNSL_1978_75_a11,
     author = {V. I. Kopeiko},
     title = {Quadratic spaces and quaternion algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--120},
     publisher = {mathdoc},
     volume = {75},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a11/}
}
TY  - JOUR
AU  - V. I. Kopeiko
TI  - Quadratic spaces and quaternion algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 110
EP  - 120
VL  - 75
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a11/
LA  - ru
ID  - ZNSL_1978_75_a11
ER  - 
%0 Journal Article
%A V. I. Kopeiko
%T Quadratic spaces and quaternion algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 110-120
%V 75
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a11/
%G ru
%F ZNSL_1978_75_a11
V. I. Kopeiko. Quadratic spaces and quaternion algebras. Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 110-120. http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a11/