Quadratic spaces and quaternion algebras
Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 110-120
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the existence of a nontrivial quaternion algebra over a field $F$ of characteristic not equal to 2 implies the existence of quadratic $F[X_1,\dots,X_n]$-spaces ($n\ge2$) which are not extensions of $F$. Bibl. 11 titles.
@article{ZNSL_1978_75_a11,
author = {V. I. Kopeiko},
title = {Quadratic spaces and quaternion algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {110--120},
publisher = {mathdoc},
volume = {75},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a11/}
}
V. I. Kopeiko. Quadratic spaces and quaternion algebras. Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 110-120. http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a11/