Classification of pairs of mutually annihilating operators in a~graded space and representations of the diad of generalized uniserial algebras
Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 91-109

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A_1$ and $A_2$ be semiperfect rings with Jacobson radicals $R_1$ and $R_2$ where by $A_1/R_1\cong A_2/R_2\cong T$ and suppose there are given isomorphisms $\varphi_1\colon A_i\to T$ ($i=1,2$). The diad of the rings $A_1$ and $A_2$ with common factor ring $T$ is the ring $A_1\times_TA_2$ consisting of all $(a_1,a_2)\in A_1\times A_2$ for which $\varphi(a_1)=\varphi(a_2)$. Representations of the dyad of generalized uniserial algebras over an algebraically closed field are described in the paper. Bibl. 9 titles.
@article{ZNSL_1978_75_a10,
     author = {V. V. Kirichenko},
     title = {Classification of pairs of mutually annihilating operators in a~graded space and representations of the diad of generalized uniserial algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--109},
     publisher = {mathdoc},
     volume = {75},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a10/}
}
TY  - JOUR
AU  - V. V. Kirichenko
TI  - Classification of pairs of mutually annihilating operators in a~graded space and representations of the diad of generalized uniserial algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 91
EP  - 109
VL  - 75
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a10/
LA  - ru
ID  - ZNSL_1978_75_a10
ER  - 
%0 Journal Article
%A V. V. Kirichenko
%T Classification of pairs of mutually annihilating operators in a~graded space and representations of the diad of generalized uniserial algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 91-109
%V 75
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a10/
%G ru
%F ZNSL_1978_75_a10
V. V. Kirichenko. Classification of pairs of mutually annihilating operators in a~graded space and representations of the diad of generalized uniserial algebras. Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 91-109. http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a10/