Classification of pairs of mutually annihilating operators in a~graded space and representations of the diad of generalized uniserial algebras
Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 91-109
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A_1$ and $A_2$ be semiperfect rings with Jacobson radicals $R_1$ and $R_2$ where by $A_1/R_1\cong A_2/R_2\cong T$ and suppose there are given isomorphisms $\varphi_1\colon A_i\to T$ ($i=1,2$). The diad of the rings $A_1$ and $A_2$ with common factor ring $T$ is the ring $A_1\times_TA_2$ consisting of all $(a_1,a_2)\in A_1\times A_2$ for which $\varphi(a_1)=\varphi(a_2)$. Representations of the dyad of generalized uniserial algebras over an algebraically closed field are described in the paper. Bibl. 9 titles.
@article{ZNSL_1978_75_a10,
author = {V. V. Kirichenko},
title = {Classification of pairs of mutually annihilating operators in a~graded space and representations of the diad of generalized uniserial algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {91--109},
publisher = {mathdoc},
volume = {75},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a10/}
}
TY - JOUR AU - V. V. Kirichenko TI - Classification of pairs of mutually annihilating operators in a~graded space and representations of the diad of generalized uniserial algebras JO - Zapiski Nauchnykh Seminarov POMI PY - 1978 SP - 91 EP - 109 VL - 75 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a10/ LA - ru ID - ZNSL_1978_75_a10 ER -
%0 Journal Article %A V. V. Kirichenko %T Classification of pairs of mutually annihilating operators in a~graded space and representations of the diad of generalized uniserial algebras %J Zapiski Nauchnykh Seminarov POMI %D 1978 %P 91-109 %V 75 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a10/ %G ru %F ZNSL_1978_75_a10
V. V. Kirichenko. Classification of pairs of mutually annihilating operators in a~graded space and representations of the diad of generalized uniserial algebras. Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 91-109. http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a10/