Selmer groups of supersingular elliptic curves
Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 16-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The orders of growth of the Selmer groups of supersingular elliptic curves in cyclotomic 2-extensions are established. These orders have the form $2^n/3$ or $2^{n+1}/3$ which alternate depending on the parity of $n$ – the number of the level of the cyclotomic extension. This agrees with the hypothetical formulas indicated earlier by A. G. Nasybullin. Bibl. 3 titles.
@article{ZNSL_1978_75_a1,
     author = {M. I. Bashmakov and A. S. Kurochkin},
     title = {Selmer groups of supersingular elliptic curves},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {16--21},
     publisher = {mathdoc},
     volume = {75},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a1/}
}
TY  - JOUR
AU  - M. I. Bashmakov
AU  - A. S. Kurochkin
TI  - Selmer groups of supersingular elliptic curves
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 16
EP  - 21
VL  - 75
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a1/
LA  - ru
ID  - ZNSL_1978_75_a1
ER  - 
%0 Journal Article
%A M. I. Bashmakov
%A A. S. Kurochkin
%T Selmer groups of supersingular elliptic curves
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 16-21
%V 75
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a1/
%G ru
%F ZNSL_1978_75_a1
M. I. Bashmakov; A. S. Kurochkin. Selmer groups of supersingular elliptic curves. Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 16-21. http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a1/