Selmer groups of supersingular elliptic curves
Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 16-21
Voir la notice de l'article provenant de la source Math-Net.Ru
The orders of growth of the Selmer groups of supersingular elliptic curves in cyclotomic 2-extensions are established. These orders have the form $2^n/3$ or $2^{n+1}/3$ which alternate depending on the parity of $n$ – the number of the level of the cyclotomic extension. This agrees with the hypothetical formulas indicated earlier by A. G. Nasybullin. Bibl. 3 titles.
@article{ZNSL_1978_75_a1,
author = {M. I. Bashmakov and A. S. Kurochkin},
title = {Selmer groups of supersingular elliptic curves},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {16--21},
publisher = {mathdoc},
volume = {75},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a1/}
}
M. I. Bashmakov; A. S. Kurochkin. Selmer groups of supersingular elliptic curves. Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 16-21. http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a1/