Likelihood ratio for densities with singularity
Zapiski Nauchnykh Seminarov POMI, Studies in the statistical estimation theory. Part I, Tome 74 (1977), pp. 66-82

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $t_n$ be Bayes estimate of parameter $\Theta$. The case of independent observations with infinite information quantity is considered. Under some conditions on densities it is shown that normalizing factor $\varphi(n)$ for $\Delta_n\varphi(n)(t_n-\Theta)$ to have nontrivial asymptotic destribution is regularly changing in the sence of Karamata. Asymptotic distribution of $\Delta_n$ derived.
@article{ZNSL_1977_74_a1,
     author = {N. K. Bakirov},
     title = {Likelihood ratio for densities with singularity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {66--82},
     publisher = {mathdoc},
     volume = {74},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_74_a1/}
}
TY  - JOUR
AU  - N. K. Bakirov
TI  - Likelihood ratio for densities with singularity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 66
EP  - 82
VL  - 74
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_74_a1/
LA  - ru
ID  - ZNSL_1977_74_a1
ER  - 
%0 Journal Article
%A N. K. Bakirov
%T Likelihood ratio for densities with singularity
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 66-82
%V 74
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_74_a1/
%G ru
%F ZNSL_1977_74_a1
N. K. Bakirov. Likelihood ratio for densities with singularity. Zapiski Nauchnykh Seminarov POMI, Studies in the statistical estimation theory. Part I, Tome 74 (1977), pp. 66-82. http://geodesic.mathdoc.fr/item/ZNSL_1977_74_a1/