Local conditions for the existence of the spectral shift function
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 102-117
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $U_0$, $U_1$ be unitary operators in a Hilbert space. If the operator $U_1-U_0$ is nuclear, then (as M. G. Krein established) there exists a function $\eta$ on the unit circle $\mathbf T$, $\eta=\eta(U_1,U_0)$, $\eta\in L_1(\mathbf T)$ satisfying the equality \begin{gather} tr(\varphi(U_1)-\varphi(U_0))=\int_{\mathbf T}\eta(\zeta)\varphi'(\zeta)d\zeta \end{gather} for all functions $\varphi$ with derivative $\varphi'$ from the Wiener class. M. Sh. Rirman and M. G. Krein proved that the function $\varphi'$ is connected with the scattering matrix $S$ for the pair $U_0$, $U_1$ by \begin{gather} \det S(\zeta)=\exp(-2\pi i\eta(\zeta)), \tag{2} \end{gather} In this paper (1) and (2) are proved under more general (local) conditions on the pair $U_0$, $U_1$. Under these conditions we investigate some properties of the function n and describe the class of functions $\eta$, which are admissible in (1). Applications to differential operators are given.
@article{ZNSL_1977_73_a7,
author = {L. S. Koplienko},
title = {Local conditions for the existence of the spectral shift function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {102--117},
year = {1977},
volume = {73},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a7/}
}
L. S. Koplienko. Local conditions for the existence of the spectral shift function. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 102-117. http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a7/