Isomorphisms and projections for quotient-spaces of $\mathscr L_1$-spaces by their reflexive subspaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 91-101

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Z_1=X_1/E_1$ and $Z_2=X_2/E_2$, where $X_1$ and $X_2$ are $\mathscr L_1$-spaces $E_1\subset X_1$, $E_2\subset X_2$. In this paper we study the following questions: 1) under what conditions are $Z_1$ and $Z_2$ isomorphic; 2) under what conditions is $Z_1$ isomorphic to a complemented subspace of $Z_2$. Some results: (a) if $E_1$ and $E_2$ are reflexive and $Z_1$. is isomorphic to $Z_2$, then one of the spaces E1 E2 is isomorphic to the product of the other by a finite-dimensional space; (b) if $X_1=C(\mathbf T)^*$ ($\mathbf T$ is a circle), $E_1=H^1$ and $E_2$ is reflexive and $X_2=Y^*$ for some $Y$, then it is impossible to imbed $Z_1$ in $Z_2$ as a complemented subspace.
@article{ZNSL_1977_73_a6,
     author = {S. V. Kislyakov},
     title = {Isomorphisms and projections for quotient-spaces of $\mathscr L_1$-spaces by their reflexive subspaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--101},
     publisher = {mathdoc},
     volume = {73},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a6/}
}
TY  - JOUR
AU  - S. V. Kislyakov
TI  - Isomorphisms and projections for quotient-spaces of $\mathscr L_1$-spaces by their reflexive subspaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 91
EP  - 101
VL  - 73
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a6/
LA  - ru
ID  - ZNSL_1977_73_a6
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%T Isomorphisms and projections for quotient-spaces of $\mathscr L_1$-spaces by their reflexive subspaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 91-101
%V 73
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a6/
%G ru
%F ZNSL_1977_73_a6
S. V. Kislyakov. Isomorphisms and projections for quotient-spaces of $\mathscr L_1$-spaces by their reflexive subspaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 91-101. http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a6/