Continuity of perturbations of integral operators, Cauchy-type integrals, maximal operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 24-34
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper simple proofs are given for several propositions about continuity of singular integral operators with Cauchy kernel. Some of these propositions turn out to be consequences of more general tests for continuity of operators of the form $$ (A^hf)(t)\overset{\operatorname{del}}=\int^b_aa(s,t)h(s,t)f(s)ds\quad (t\in[a,b]) $$ under the condition that $A^1$ is a continuous operator (in a given pair of spaces). As the functions $a$ and $h$ one considers, as a rule, functions of the form $1/(e^{it}-e^{is})$ and $\Phi\biggl(\dfrac{\omega(t)-\omega(s)}{e^{it}-e^{is}}\biggr)$ respectively.
@article{ZNSL_1977_73_a2,
author = {S. A. Vinogradov},
title = {Continuity of perturbations of integral operators, {Cauchy-type} integrals, maximal operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {24--34},
year = {1977},
volume = {73},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a2/}
}
S. A. Vinogradov. Continuity of perturbations of integral operators, Cauchy-type integrals, maximal operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 24-34. http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a2/