Construction of a self-adjoint dilatation for a problem with impedance boundary condition
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 217-223

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the spectral problem $$ \Delta u+k^2u=0,\quad\dfrac{\partial u}{\partial n}-ik\sigma u|_{\delta\Omega}=0,\quad\sigma\geqslant0. $$ We construct a self-adjoint dilatation and the problem is reduced to the investigation of a dissipative operator in a space with energy metric.
@article{ZNSL_1977_73_a17,
     author = {B. S. Pavlov and M. D. Faddeev},
     title = {Construction of a self-adjoint dilatation for a problem with impedance boundary condition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {217--223},
     publisher = {mathdoc},
     volume = {73},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a17/}
}
TY  - JOUR
AU  - B. S. Pavlov
AU  - M. D. Faddeev
TI  - Construction of a self-adjoint dilatation for a problem with impedance boundary condition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 217
EP  - 223
VL  - 73
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a17/
LA  - ru
ID  - ZNSL_1977_73_a17
ER  - 
%0 Journal Article
%A B. S. Pavlov
%A M. D. Faddeev
%T Construction of a self-adjoint dilatation for a problem with impedance boundary condition
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 217-223
%V 73
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a17/
%G ru
%F ZNSL_1977_73_a17
B. S. Pavlov; M. D. Faddeev. Construction of a self-adjoint dilatation for a problem with impedance boundary condition. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 217-223. http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a17/