Construction of a self-adjoint dilatation for a problem with impedance boundary condition
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 217-223
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the spectral problem
$$
\Delta u+k^2u=0,\quad\dfrac{\partial u}{\partial n}-ik\sigma u|_{\delta\Omega}=0,\quad\sigma\geqslant0.
$$
We construct a self-adjoint dilatation and the problem is reduced to the investigation of a dissipative operator in a space with energy metric.
@article{ZNSL_1977_73_a17,
author = {B. S. Pavlov and M. D. Faddeev},
title = {Construction of a self-adjoint dilatation for a problem with impedance boundary condition},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {217--223},
publisher = {mathdoc},
volume = {73},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a17/}
}
TY - JOUR AU - B. S. Pavlov AU - M. D. Faddeev TI - Construction of a self-adjoint dilatation for a problem with impedance boundary condition JO - Zapiski Nauchnykh Seminarov POMI PY - 1977 SP - 217 EP - 223 VL - 73 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a17/ LA - ru ID - ZNSL_1977_73_a17 ER -
B. S. Pavlov; M. D. Faddeev. Construction of a self-adjoint dilatation for a problem with impedance boundary condition. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 217-223. http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a17/