Spectral measures and duality of spectral subspaces of contractions with slowly growing resolvent
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 203-206
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the class $\Pi$ of contracting operators $T$ with spectrum on the unit circle $\Gamma$, acting on a separable Hilbert space and subject to the following restriction on the growth of the resolvent $R_T(\lambda)$: $$ \sup_{0\leqslant\rho<1}\int^{2\pi}_0\ln^+\{(1-\rho)\|R_T(\rho e^{i\varphi})\|\}d\varphi<+\infty. $$ We study the spectral subspaces $\Omega_T(B)$ for $T\in\Pi$, corresponding to arbitrary Borel subsets of the circle $\Gamma$; in parallel we study a Borel measure $\omega_T(B)$ on $\Gamma$, adequate for $\Omega_T(B)$ in the following sense: $$ \Omega_T(B)=\{0\}\Longleftrightarrow\omega_T(B)=0. $$
@article{ZNSL_1977_73_a14,
author = {Yu. P. Ginzburg},
title = {Spectral measures and duality of spectral subspaces of contractions with slowly growing resolvent},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {203--206},
year = {1977},
volume = {73},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a14/}
}
Yu. P. Ginzburg. Spectral measures and duality of spectral subspaces of contractions with slowly growing resolvent. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 203-206. http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a14/