Spectral measures and duality of spectral subspaces of contractions with slowly growing resolvent
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 203-206
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the class $\Pi$ of contracting operators $T$ with spectrum on the unit
circle $\Gamma$, acting on a separable Hilbert space and subject to the following
restriction on the growth of the resolvent $R_T(\lambda)$:
$$
\sup_{0\leqslant\rho1}\int^{2\pi}_0\ln^+\{(1-\rho)\|R_T(\rho e^{i\varphi})\|\}d\varphi+\infty.
$$
We study the spectral subspaces $\Omega_T(B)$ for $T\in\Pi$, corresponding to arbitrary
Borel subsets of the circle $\Gamma$; in parallel we study a Borel measure $\omega_T(B)$ on $\Gamma$,
adequate for $\Omega_T(B)$ in the following sense:
$$
\Omega_T(B)=\{0\}\Longleftrightarrow\omega_T(B)=0.
$$
@article{ZNSL_1977_73_a14,
author = {Yu. P. Ginzburg},
title = {Spectral measures and duality of spectral subspaces of contractions with slowly growing resolvent},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {203--206},
publisher = {mathdoc},
volume = {73},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a14/}
}
TY - JOUR AU - Yu. P. Ginzburg TI - Spectral measures and duality of spectral subspaces of contractions with slowly growing resolvent JO - Zapiski Nauchnykh Seminarov POMI PY - 1977 SP - 203 EP - 206 VL - 73 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a14/ LA - ru ID - ZNSL_1977_73_a14 ER -
Yu. P. Ginzburg. Spectral measures and duality of spectral subspaces of contractions with slowly growing resolvent. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 203-206. http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a14/