Solution of the exponential moment problem in the space $L^2(0,\infty)$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 193-194
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the system of exponentials $\{\exp(-\lambda_kt)\}\subset L_2(0,+\infty)$, $\lambda_k=c\{1+C(1/k)\}k^\beta$, $\beta>1$, $c>0$, An asymptotic formula is obtained for the biorthogonal system $\theta_k$,,
$$
\theta_k=\exp 2k[v.p.\int_0^\infty\tau^{1/\beta}(\tau^2-1)^{-1}d\tau+0(1)].
$$
is obtained.
In the space $L^2(0,\infty)$ we consider the moment problem.
@article{ZNSL_1977_73_a12,
author = {S. A. Avdonin},
title = {Solution of the exponential moment problem in the space $L^2(0,\infty)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {193--194},
publisher = {mathdoc},
volume = {73},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a12/}
}
S. A. Avdonin. Solution of the exponential moment problem in the space $L^2(0,\infty)$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 193-194. http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a12/