Space of operators acting from one banach lattice to another
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 188-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note we construct a pair of Banach lattices $X$ and $Y$, which have the following properties: a) $X$ is not order isomorphic to an $AL$-space, b) $Y$ is not order isomorphic to an $AM$-space, c) for any continuous linear operator $T:X\to Y$ there exists a modulus $|T|:X\to Y$. This example refutes the conjecture of Cartwright–Lotz, saying that the negation of at least one of the conditions a) or b) is necessary for the validity of c).
@article{ZNSL_1977_73_a11,
     author = {Yu. A. Abramovich},
     title = {Space of operators acting from one banach lattice to another},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {188--192},
     year = {1977},
     volume = {73},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a11/}
}
TY  - JOUR
AU  - Yu. A. Abramovich
TI  - Space of operators acting from one banach lattice to another
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 188
EP  - 192
VL  - 73
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a11/
LA  - ru
ID  - ZNSL_1977_73_a11
ER  - 
%0 Journal Article
%A Yu. A. Abramovich
%T Space of operators acting from one banach lattice to another
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 188-192
%V 73
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a11/
%G ru
%F ZNSL_1977_73_a11
Yu. A. Abramovich. Space of operators acting from one banach lattice to another. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VIII, Tome 73 (1977), pp. 188-192. http://geodesic.mathdoc.fr/item/ZNSL_1977_73_a11/