Concerning one integral inequality
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IV, Tome 72 (1977), pp. 116-119

Voir la notice de l'article provenant de la source Math-Net.Ru

The inequality of Zinger [1] (Theorem 1) is proved. The proof uses a monotone mapping $x\longmapsto F(x)$.
@article{ZNSL_1977_72_a9,
     author = {N. A. Sapogov},
     title = {Concerning one integral inequality},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {116--119},
     publisher = {mathdoc},
     volume = {72},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a9/}
}
TY  - JOUR
AU  - N. A. Sapogov
TI  - Concerning one integral inequality
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 116
EP  - 119
VL  - 72
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a9/
LA  - ru
ID  - ZNSL_1977_72_a9
ER  - 
%0 Journal Article
%A N. A. Sapogov
%T Concerning one integral inequality
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 116-119
%V 72
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a9/
%G ru
%F ZNSL_1977_72_a9
N. A. Sapogov. Concerning one integral inequality. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IV, Tome 72 (1977), pp. 116-119. http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a9/