A strong law of large numbers for orthogonal random variables
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IV, Tome 72 (1977), pp. 103-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A generalization of one theorem of K. Tandori is proved. A sufficient condition is derived for application of a strong law of large numbers to a sequence of orthogonal random variables, expressed in terms of the growth of sums of second moments of these variables.
@article{ZNSL_1977_72_a7,
     author = {V. V. Petrov},
     title = {A strong law of large numbers for orthogonal random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--106},
     year = {1977},
     volume = {72},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a7/}
}
TY  - JOUR
AU  - V. V. Petrov
TI  - A strong law of large numbers for orthogonal random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 103
EP  - 106
VL  - 72
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a7/
LA  - ru
ID  - ZNSL_1977_72_a7
ER  - 
%0 Journal Article
%A V. V. Petrov
%T A strong law of large numbers for orthogonal random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 103-106
%V 72
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a7/
%G ru
%F ZNSL_1977_72_a7
V. V. Petrov. A strong law of large numbers for orthogonal random variables. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IV, Tome 72 (1977), pp. 103-106. http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a7/