A class of limit distributions for maximum cumulative sum
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IV, Tome 72 (1977), pp. 92-97

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,X_2,\dots$ be a sequence of independent identically distributed random variables with zero mathematical expectation and finite variances. $S_0=0$ and $S_n\sum^n_{i=1}X_i$. It is proved that $G_a(x)= \begin{cases} 0, \text{\rm{ if }}x\leqslant a,\\ \dfrac{\Phi(x)-\Phi(a)}{1-\Phi(a)}, \text{\rm{ if }}x\geqslant a. \end{cases}$ is the limit distribution function of the normalized random variable $\overline S_n=\max_{0\leqslant k\leqslant n}\{S_k+a(k,n)\}$ for some sequence of centering constants $a(k,n)$.
@article{ZNSL_1977_72_a5,
     author = {V. B. Nevzorov},
     title = {A class of limit distributions for maximum cumulative sum},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--97},
     publisher = {mathdoc},
     volume = {72},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a5/}
}
TY  - JOUR
AU  - V. B. Nevzorov
TI  - A class of limit distributions for maximum cumulative sum
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 92
EP  - 97
VL  - 72
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a5/
LA  - ru
ID  - ZNSL_1977_72_a5
ER  - 
%0 Journal Article
%A V. B. Nevzorov
%T A class of limit distributions for maximum cumulative sum
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 92-97
%V 72
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a5/
%G ru
%F ZNSL_1977_72_a5
V. B. Nevzorov. A class of limit distributions for maximum cumulative sum. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IV, Tome 72 (1977), pp. 92-97. http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a5/