A class of limit distributions for maximum cumulative sum
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IV, Tome 72 (1977), pp. 92-97
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X_1,X_2,\dots$ be a sequence of independent identically distributed random variables with zero mathematical expectation and finite variances. $S_0=0$ and $S_n\sum^n_{i=1}X_i$. It is proved that $G_a(x)= \begin{cases} 0, & \text{\rm{ if }}x\leqslant a,\\ \dfrac{\Phi(x)-\Phi(a)}{1-\Phi(a)}, & \text{\rm{ if }}x\geqslant a. \end{cases}$ is the limit distribution function of the normalized random variable $\overline S_n=\max_{0\leqslant k\leqslant n}\{S_k+a(k,n)\}$ for some sequence of centering constants $a(k,n)$.
@article{ZNSL_1977_72_a5,
author = {V. B. Nevzorov},
title = {A class of limit distributions for maximum cumulative sum},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {92--97},
year = {1977},
volume = {72},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a5/}
}
V. B. Nevzorov. A class of limit distributions for maximum cumulative sum. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IV, Tome 72 (1977), pp. 92-97. http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a5/