Projection of processes with orthogonal increments and subordinated processes
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IV, Tome 72 (1977), pp. 132-139

Voir la notice de l'article provenant de la source Math-Net.Ru

Second-order random processes are considered as curves in a Hilbert space $\mathscr H$ of random variables $\xi$ with $E_\xi=0$, $E|\xi|^2\infty$. Processes which are a projection of a given process $x(t)$ with orthogonal increments on some subspaces of $\mathscr H$ are considered. Processes subordinate to $x(t)$ are also considered.
@article{ZNSL_1977_72_a11,
     author = {T. N. Siraya},
     title = {Projection of processes with orthogonal increments and subordinated processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {132--139},
     publisher = {mathdoc},
     volume = {72},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a11/}
}
TY  - JOUR
AU  - T. N. Siraya
TI  - Projection of processes with orthogonal increments and subordinated processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 132
EP  - 139
VL  - 72
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a11/
LA  - ru
ID  - ZNSL_1977_72_a11
ER  - 
%0 Journal Article
%A T. N. Siraya
%T Projection of processes with orthogonal increments and subordinated processes
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 132-139
%V 72
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a11/
%G ru
%F ZNSL_1977_72_a11
T. N. Siraya. Projection of processes with orthogonal increments and subordinated processes. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IV, Tome 72 (1977), pp. 132-139. http://geodesic.mathdoc.fr/item/ZNSL_1977_72_a11/