Solution of the eigenvalue problem for a regular pencil $\lambda A_0-A_1$ with singular matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 103-123

Voir la notice de l'article provenant de la source Math-Net.Ru

One considers the generalized eigenvalue problem \begin{equation} (A_0\lambda-A_1)x=0, \end{equation} when one or both matrices $A_0$, $A_1$ are singular and ker $\operatorname{ker}A_0\cap\operatorname{ker}A_1=\varnothing$ is the empty set. With the aid of the normalized process, the solving of problem (1) reduces to the solving of the eigenvalue problem of a constant matrix of order $r=\min(r_0,r_1)$, where $r_0$, $r_1$ are the ranks of the matrices $A_0$, $A_1$, which are determined at the normalized decomposition of the matrices. One gives an Algol program which performs the presented algorithm and testing examples.
@article{ZNSL_1977_70_a6,
     author = {V. N. Kublanovskaya and T. Ya. Kon'kova},
     title = {Solution of the eigenvalue problem for a regular pencil $\lambda A_0-A_1$ with singular matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--123},
     publisher = {mathdoc},
     volume = {70},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a6/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
AU  - T. Ya. Kon'kova
TI  - Solution of the eigenvalue problem for a regular pencil $\lambda A_0-A_1$ with singular matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 103
EP  - 123
VL  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a6/
LA  - ru
ID  - ZNSL_1977_70_a6
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%A T. Ya. Kon'kova
%T Solution of the eigenvalue problem for a regular pencil $\lambda A_0-A_1$ with singular matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 103-123
%V 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a6/
%G ru
%F ZNSL_1977_70_a6
V. N. Kublanovskaya; T. Ya. Kon'kova. Solution of the eigenvalue problem for a regular pencil $\lambda A_0-A_1$ with singular matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 103-123. http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a6/