Analysis of singular matrix pencils
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 89-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One considers the spectral problem for a singular pencil $D(\lambda)=A+\lambda B$ of matrices $A$ and $B$ ($A$ and $B$ are rectangular matrices or $\det D(\lambda)=0$). One represents an algorithm which allows us to find the reducing subspaces for $D(\lambda)$ and with their aid to reduce the dimension of the initial pencil, by isolating from it the zero block, the blocks corresponding to the right and left polynomial solutions of the equations $(A+\lambda B)x(\lambda)=0$ and $y(\lambda)(A+\lambda B)=0$, respectively, as well as the block corresponding to the regular kernel of the pencil $D(\lambda)$. The algorithm is based on the application of the normalized process which uses the numerically stable elementary orthogonal transformations (the matrices of plane rotations or reflections).
@article{ZNSL_1977_70_a5,
     author = {V. N. Kublanovskaya},
     title = {Analysis of singular matrix pencils},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {89--102},
     year = {1977},
     volume = {70},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a5/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
TI  - Analysis of singular matrix pencils
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 89
EP  - 102
VL  - 70
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a5/
LA  - ru
ID  - ZNSL_1977_70_a5
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%T Analysis of singular matrix pencils
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 89-102
%V 70
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a5/
%G ru
%F ZNSL_1977_70_a5
V. N. Kublanovskaya. Analysis of singular matrix pencils. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 89-102. http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a5/