A description of the algebras of analytic functions admitting localization of ideals
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 267-269
Voir la notice de l'article provenant de la source Math-Net.Ru
Let$\mathbf D=\{z\in\mathbf C:|z|1\}$ and let $A_\varphi(\mathbf D)$ be the algebra of all analytic functions $f$ in $\mathbf D$ for which $\log|f(z)|\leqslant C_f\varphi\biggl(\dfrac{1}{1-|z|}\biggr)$, $z\in\mathbf D$. Under in known restrictions regarding the regularity of the growth of the function $\varphi$, one proves
THEOREM. In order that each closed ideal $I$, $I\subset A_\varphi(\mathbf D)$, be local, it is necessary
and sufficient that one should have
$$
\int_1^\infty\biggl(\dfrac{\varphi(x)}{x^3}\biggr)^{1/2}dx=\infty.
$$
be the algebra of all analytic functions.
Here, the localness of the ideal $I$ means that $I=\{f\in A_\varphi(\mathbf D):k_f\geqslant k_I\}$, where
$k_f(\zeta)$ is the multiplicity of a zero of the function $f$ at the point $\zeta$, $k_I(\zeta)=\min_{f\in I}k_f(\zeta)$.
@article{ZNSL_1977_70_a17,
author = {S. A. Apresyan},
title = {A description of the algebras of analytic functions admitting localization of ideals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {267--269},
publisher = {mathdoc},
volume = {70},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a17/}
}
S. A. Apresyan. A description of the algebras of analytic functions admitting localization of ideals. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 267-269. http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a17/