Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 241-255

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u(t,x)$ be a solution of the first initial–boundary-value problem for the quasilinear parabolic equation \begin{equation} \dfrac{\partial u}{\partial t}=a(t,x,u,\dfrac{\partial u}{\partial x})\dfrac{\partial^2u}{\partial x^2}+ b(t,x,u,\dfrac{\partial u}{\partial x}),\qquad 0\leqslant T,\quad 01 \tag{1} \end{equation} with the initial condition \begin{equation} u(0,x)=\omega(x),\quad 01 \tag{2} \end{equation} and the boundary conditions \begin{equation} u(t,0)=u(t,1)=0,\quad 0\leqslant T, \tag{3} \end{equation} such that $$ \biggl|\dfrac{\partial^4u}{\partial x^4}(t,x)\biggr|\leqslant C,\quad \biggl|\dfrac{\partial^2u}{\partial t^2}(t,x)\biggr|\leqslant\dfrac{c}{t^\sigma},\quad 0\leqslant\sigma2 $$ Assume that the functions $a(t,x,u,p)$, $b(t,x,u,p)$ are smooth and in a small neighborhood of the solution under consideration. Then, the implicit scheme of the finite-difference method converges uniformly to the solution under consideration with the order$h^2+\varphi(\tau)$, under the condition that \begin{equation} \varphi(\tau)\leqslant\beta h^\gamma,\quad \beta>0,\quad \gamma>1 \tag{4} \end{equation} Here $$ \varphi(\tau)= \begin{cases} \tau \text{\rm{ при }}0\leqslant\sigma1\\ \tau\ln\dfrac{T}{\tau} \text{\rm{ при }}\sigma=1\\ \tau^{2-\sigma} \text{\rm{ при }}1\sigma2. \end{cases} $$ One also considers convergence conditions when the relations (4) do not hold, convergence conditions for equations of the form $$ \dfrac{\partial u}{\partial t}=F\biggl(t,x,u,\dfrac{\partial u}{\partial x},\dfrac{d}{dx}K(t,x,\dfrac{\partial u}{\partial x})\biggr) $$ and weakly connected systems of such equations.
@article{ZNSL_1977_70_a15,
     author = {M. N. Yakovlev},
     title = {Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {241--255},
     publisher = {mathdoc},
     volume = {70},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a15/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 241
EP  - 255
VL  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a15/
LA  - ru
ID  - ZNSL_1977_70_a15
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 241-255
%V 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a15/
%G ru
%F ZNSL_1977_70_a15
M. N. Yakovlev. Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 241-255. http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a15/