Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 241-255
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u(t,x)$ be a solution of the first initial–boundary-value problem for the
quasilinear parabolic equation
\begin{equation}
\dfrac{\partial u}{\partial t}=a(t,x,u,\dfrac{\partial u}{\partial x})\dfrac{\partial^2u}{\partial x^2}+
b(t,x,u,\dfrac{\partial u}{\partial x}),\qquad 0\leqslant T,\quad 01
\tag{1}
\end{equation}
with the initial condition
\begin{equation}
u(0,x)=\omega(x),\quad 01
\tag{2}
\end{equation}
and the boundary conditions
\begin{equation}
u(t,0)=u(t,1)=0,\quad 0\leqslant T,
\tag{3}
\end{equation}
such that
$$
\biggl|\dfrac{\partial^4u}{\partial x^4}(t,x)\biggr|\leqslant C,\quad
\biggl|\dfrac{\partial^2u}{\partial t^2}(t,x)\biggr|\leqslant\dfrac{c}{t^\sigma},\quad
0\leqslant\sigma2
$$
Assume that the functions $a(t,x,u,p)$, $b(t,x,u,p)$ are smooth and
in a small neighborhood of the solution under consideration. Then, the implicit
scheme of the finite-difference method converges uniformly to the solution under
consideration with the order$h^2+\varphi(\tau)$, under the condition that
\begin{equation}
\varphi(\tau)\leqslant\beta h^\gamma,\quad \beta>0,\quad \gamma>1
\tag{4}
\end{equation}
Here
$$
\varphi(\tau)=
\begin{cases}
\tau \text{\rm{ при }}0\leqslant\sigma1\\
\tau\ln\dfrac{T}{\tau} \text{\rm{ при }}\sigma=1\\
\tau^{2-\sigma} \text{\rm{ при }}1\sigma2.
\end{cases}
$$
One also considers convergence conditions when the relations (4) do not hold,
convergence conditions for equations of the form
$$
\dfrac{\partial u}{\partial t}=F\biggl(t,x,u,\dfrac{\partial u}{\partial x},\dfrac{d}{dx}K(t,x,\dfrac{\partial u}{\partial x})\biggr)
$$
and weakly connected systems of such equations.
@article{ZNSL_1977_70_a15,
author = {M. N. Yakovlev},
title = {Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {241--255},
publisher = {mathdoc},
volume = {70},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a15/}
}
TY - JOUR AU - M. N. Yakovlev TI - Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation JO - Zapiski Nauchnykh Seminarov POMI PY - 1977 SP - 241 EP - 255 VL - 70 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a15/ LA - ru ID - ZNSL_1977_70_a15 ER -
%0 Journal Article %A M. N. Yakovlev %T Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation %J Zapiski Nauchnykh Seminarov POMI %D 1977 %P 241-255 %V 70 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a15/ %G ru %F ZNSL_1977_70_a15
M. N. Yakovlev. Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 241-255. http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a15/