Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 232-240

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u(t,x)$ be a solution of the first initial–boundary-value problem for the nonlinear equation $$ \dfrac{\partial u}{\partial t}=F\biggl(t,x,u,\dfrac{\partial u}{\partial x},\dfrac{\partial^2u}{\partial x^2}\biggr),\qquad 0\leqslant T,\quad 01 $$ with initial condition $$ u(0,x)=\omega(x),\quad 01 $$ and boundary conditions $u(t,0)=u(t,1)=0$, $0$, such that $\biggl|\dfrac{\partial^4u}{\partial x^4}(t,x)\biggr|\leqslant C$. Assume that the function $F(t,x,u,p,r)$ is smooth and is such that $$ \dfrac{1}{r-\overline{r}}\biggl[F(t,x,u,p,r)-F(t,x,u,p,\overline{r})\biggr]\geqslant\alpha>0 $$in a small neighborhood of the solution under consideration. Then, the longitudinal scheme of the method of lines converges uniformly with order $h^2$ to the solution under consideration. One considers the case of less smooth solutions and of more general equations. One gives theorems which show explicit estimates for the step $h$, under which one can guarantee a nonlocal solvability of the Cauchy problem for systems of ordinary differential equations by the method of lines.
@article{ZNSL_1977_70_a14,
     author = {M. N. Yakovlev},
     title = {Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {232--240},
     publisher = {mathdoc},
     volume = {70},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a14/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 232
EP  - 240
VL  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a14/
LA  - ru
ID  - ZNSL_1977_70_a14
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 232-240
%V 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a14/
%G ru
%F ZNSL_1977_70_a14
M. N. Yakovlev. Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 232-240. http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a14/