Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 232-240
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u(t,x)$ be a solution of the first initial–boundary-value problem for the
nonlinear equation
$$
\dfrac{\partial u}{\partial t}=F\biggl(t,x,u,\dfrac{\partial u}{\partial x},\dfrac{\partial^2u}{\partial x^2}\biggr),\qquad 0\leqslant T,\quad 01
$$
with initial condition
$$
u(0,x)=\omega(x),\quad 01
$$
and boundary conditions $u(t,0)=u(t,1)=0$, $0$, such that $\biggl|\dfrac{\partial^4u}{\partial x^4}(t,x)\biggr|\leqslant C$. Assume that the function $F(t,x,u,p,r)$ is smooth and is such that
$$
\dfrac{1}{r-\overline{r}}\biggl[F(t,x,u,p,r)-F(t,x,u,p,\overline{r})\biggr]\geqslant\alpha>0
$$in a small neighborhood of the solution under consideration. Then, the
longitudinal scheme of the method of lines converges uniformly with order $h^2$ to the solution under consideration. One considers the case of less
smooth solutions and of more general equations. One gives theorems which
show explicit estimates for the step $h$, under which one can guarantee
a nonlocal solvability of the Cauchy problem for systems of ordinary differential
equations by the method of lines.
@article{ZNSL_1977_70_a14,
author = {M. N. Yakovlev},
title = {Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {232--240},
publisher = {mathdoc},
volume = {70},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a14/}
}
TY - JOUR AU - M. N. Yakovlev TI - Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation JO - Zapiski Nauchnykh Seminarov POMI PY - 1977 SP - 232 EP - 240 VL - 70 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a14/ LA - ru ID - ZNSL_1977_70_a14 ER -
%0 Journal Article %A M. N. Yakovlev %T Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation %J Zapiski Nauchnykh Seminarov POMI %D 1977 %P 232-240 %V 70 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a14/ %G ru %F ZNSL_1977_70_a14
M. N. Yakovlev. Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 232-240. http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a14/