Use of a computer to find the number of regular pentagons that can simultaneously touch a given one
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 169-177
Cet article a éte moissonné depuis la source Math-Net.Ru
Around an initial regular pentagon one describes a contour $L$ on which one introduces a measure $m$. One investigates the difference $S(M)=\dfrac17m(L)-m(L\cap M)$ where $M$ is a pentagon touching the initial one and congruent to it. The geometric part of the investigation reduces the proof of the inequality $S(M)<0$ for all $M$ to the proof of the negativity of two effectively computable functions $F(u,v)$ and $G(v)$ in the compact domain of the variation of the arguments. By the method of demonstrative computations, one calculates on a computer the values of these functions at the nodes of a rectangular net of the domain of the variation of the arguments by taking into account the monotonicity and one estimates the computational error. The results of the computation show that we have the inequality $S(M)<0$, from where it follows that the desired number is equal to six.
@article{ZNSL_1977_70_a10,
author = {P. S. Pankov and S. L. Dolmatov},
title = {Use of a computer to find the number of regular pentagons that can simultaneously touch a given one},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {169--177},
year = {1977},
volume = {70},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a10/}
}
TY - JOUR AU - P. S. Pankov AU - S. L. Dolmatov TI - Use of a computer to find the number of regular pentagons that can simultaneously touch a given one JO - Zapiski Nauchnykh Seminarov POMI PY - 1977 SP - 169 EP - 177 VL - 70 UR - http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a10/ LA - ru ID - ZNSL_1977_70_a10 ER -
P. S. Pankov; S. L. Dolmatov. Use of a computer to find the number of regular pentagons that can simultaneously touch a given one. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 169-177. http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a10/