Convergence of the highest derivatives in projection methods
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 11-18

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that for the approximate solution of an elliptic differential equation in a bounded domain $\Omega$, under a natural boundary condition, one applies the Galerkin method with polynomial coordinate functions. One gives sufficient conditions, imposed on the exact solution $u^*$, which ensure the convergence of the derivatives of order $k$ of the approximate solutions, uniformly or in the mean in $\Omega$ or in any interior subdomain. For example, if $u^*\in W_2^{(k)}$, then the derivatives of order k converge in $L_2(\Omega')$, where $\Omega'$ is an interior subdomain of $\Omega$. Somewhat weaker statements are obtained in the case of the Dirchlet problem.
@article{ZNSL_1977_70_a1,
     author = {I. K. Daugavet},
     title = {Convergence of the highest derivatives in projection methods},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {11--18},
     publisher = {mathdoc},
     volume = {70},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a1/}
}
TY  - JOUR
AU  - I. K. Daugavet
TI  - Convergence of the highest derivatives in projection methods
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 11
EP  - 18
VL  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a1/
LA  - ru
ID  - ZNSL_1977_70_a1
ER  - 
%0 Journal Article
%A I. K. Daugavet
%T Convergence of the highest derivatives in projection methods
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 11-18
%V 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a1/
%G ru
%F ZNSL_1977_70_a1
I. K. Daugavet. Convergence of the highest derivatives in projection methods. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 11-18. http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a1/