A gap in the energy spectrum of the one-dimensional Dirac operator
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 7-10
Cet article a éte moissonné depuis la source Math-Net.Ru
One considers the one-dimensional Dirac operator with a slowly oscillating potential \begin{equation} H=\begin{pmatrix} 0 & 1\\ -1 &0 \end{pmatrix}\dfrac{d}{dx}+q\begin{pmatrix} \cos Z(x) & \sin Z(x)\\ \sin Z(x) & -\cos Z(x)\end{pmatrix},\quad x\in(-\infty,\infty),\quad q-\mathrm{const}, \end{equation} where $Z(x)\in C^1(\mathbf R^1)$ and $Z(x)\underset{x\to\pm\infty}\to C\pm|x|^\alpha$, $0<\alpha<1$, $C\pm-\mathrm{const}$. The following statement holds. The double absolutely continuous spectrum of the operator (1) fills the intervals $(-\inftu,-|q|)$, $(|q|,\infty)$. The interval $(-|q|,|q|)$ is free from spectrum. The operator has a simple eigenvalue only for $\operatorname{sign}C_+=\operatorname{sign}C_-$, situated either at the point (under the condition $C_+>0$) or at the point $\lambda=-|q|$ (under the condition). The proof is based on the investigation of the coordinate asytnptotics of the corresponding equation.
@article{ZNSL_1977_70_a0,
author = {L. A. Bordag},
title = {A gap in the energy spectrum of the one-dimensional {Dirac} operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--10},
year = {1977},
volume = {70},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a0/}
}
L. A. Bordag. A gap in the energy spectrum of the one-dimensional Dirac operator. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 70 (1977), pp. 7-10. http://geodesic.mathdoc.fr/item/ZNSL_1977_70_a0/