Properties of solutions of linear and quasilinear second-order equations with measurable coefficients which are neither strictly nor uniformly parabolic
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 10, Tome 69 (1977), pp. 45-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the cylinder $Q_T=\Omega\times[o,T]$, where $\Omega$ is a bounded domain in $R^n$, linear and quasilinear second-order equations with measurable coefficients in $Q_T$ are considered which are, in general, neither strictly nor uniformly parablic. Previous results of the author for equations of this sort are developed.
@article{ZNSL_1977_69_a3,
     author = {A. V. Ivanov},
     title = {Properties of solutions of linear and quasilinear second-order equations with measurable coefficients which are neither strictly nor uniformly parabolic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--64},
     year = {1977},
     volume = {69},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a3/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - Properties of solutions of linear and quasilinear second-order equations with measurable coefficients which are neither strictly nor uniformly parabolic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 45
EP  - 64
VL  - 69
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a3/
LA  - ru
ID  - ZNSL_1977_69_a3
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T Properties of solutions of linear and quasilinear second-order equations with measurable coefficients which are neither strictly nor uniformly parabolic
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 45-64
%V 69
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a3/
%G ru
%F ZNSL_1977_69_a3
A. V. Ivanov. Properties of solutions of linear and quasilinear second-order equations with measurable coefficients which are neither strictly nor uniformly parabolic. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 10, Tome 69 (1977), pp. 45-64. http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a3/