The solvability of the second initial boundary-value problem for the linear, time-dependent system of Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 10, Tome 69 (1977), pp. 200-218
Voir la notice de l'article provenant de la source Math-Net.Ru
In a class of functions with Holder-continuous derivatives unique solvability is is proved for the problem of determining a solution of the linear, time-dependent system of Navier–Stokes equations with boundary data $\sum^3_{j=1}T_{ij}n_j$, $i=1,2,3$, where $n_j$ are the direction cosines of the exterior normal to the boundary and $T_{ij}$ are the components of the stress tensor.
@article{ZNSL_1977_69_a14,
author = {V. A. Solonnikov},
title = {The solvability of the second initial boundary-value problem for the linear, time-dependent system of {Navier--Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {200--218},
publisher = {mathdoc},
volume = {69},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a14/}
}
TY - JOUR AU - V. A. Solonnikov TI - The solvability of the second initial boundary-value problem for the linear, time-dependent system of Navier--Stokes equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1977 SP - 200 EP - 218 VL - 69 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a14/ LA - ru ID - ZNSL_1977_69_a14 ER -
%0 Journal Article %A V. A. Solonnikov %T The solvability of the second initial boundary-value problem for the linear, time-dependent system of Navier--Stokes equations %J Zapiski Nauchnykh Seminarov POMI %D 1977 %P 200-218 %V 69 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a14/ %G ru %F ZNSL_1977_69_a14
V. A. Solonnikov. The solvability of the second initial boundary-value problem for the linear, time-dependent system of Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 10, Tome 69 (1977), pp. 200-218. http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a14/