The solvability of the second initial boundary-value problem for the linear, time-dependent system of Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 10, Tome 69 (1977), pp. 200-218

Voir la notice de l'article provenant de la source Math-Net.Ru

In a class of functions with Holder-continuous derivatives unique solvability is is proved for the problem of determining a solution of the linear, time-dependent system of Navier–Stokes equations with boundary data $\sum^3_{j=1}T_{ij}n_j$, $i=1,2,3$, where $n_j$ are the direction cosines of the exterior normal to the boundary and $T_{ij}$ are the components of the stress tensor.
@article{ZNSL_1977_69_a14,
     author = {V. A. Solonnikov},
     title = {The solvability of the second initial boundary-value problem for the linear, time-dependent system of {Navier--Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {200--218},
     publisher = {mathdoc},
     volume = {69},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a14/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - The solvability of the second initial boundary-value problem for the linear, time-dependent system of Navier--Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 200
EP  - 218
VL  - 69
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a14/
LA  - ru
ID  - ZNSL_1977_69_a14
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T The solvability of the second initial boundary-value problem for the linear, time-dependent system of Navier--Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 200-218
%V 69
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a14/
%G ru
%F ZNSL_1977_69_a14
V. A. Solonnikov. The solvability of the second initial boundary-value problem for the linear, time-dependent system of Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 10, Tome 69 (1977), pp. 200-218. http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a14/