A uniqueness theorem for a generalized solution of a system of two quasilinear equations in the class of bounded, measurable functions
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 10, Tome 69 (1977), pp. 3-18
Voir la notice de l'article provenant de la source Math-Net.Ru
A theorem is formulated and proved regarding the uniqueness of a generalized solution of Cauchy's for a hyperbolic system consisting of two first-order quasilinear equations with one spatial variable. Admissible solutions are bounded, measurable functions satisfying an additional condition of entropy type.
@article{ZNSL_1977_69_a0,
author = {\'E. B. Bykhovskii},
title = {A uniqueness theorem for a generalized solution of a system of two quasilinear equations in the class of bounded, measurable functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {3--18},
publisher = {mathdoc},
volume = {69},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a0/}
}
TY - JOUR AU - É. B. Bykhovskii TI - A uniqueness theorem for a generalized solution of a system of two quasilinear equations in the class of bounded, measurable functions JO - Zapiski Nauchnykh Seminarov POMI PY - 1977 SP - 3 EP - 18 VL - 69 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a0/ LA - ru ID - ZNSL_1977_69_a0 ER -
%0 Journal Article %A É. B. Bykhovskii %T A uniqueness theorem for a generalized solution of a system of two quasilinear equations in the class of bounded, measurable functions %J Zapiski Nauchnykh Seminarov POMI %D 1977 %P 3-18 %V 69 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a0/ %G ru %F ZNSL_1977_69_a0
É. B. Bykhovskii. A uniqueness theorem for a generalized solution of a system of two quasilinear equations in the class of bounded, measurable functions. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 10, Tome 69 (1977), pp. 3-18. http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a0/