A uniqueness theorem for a generalized solution of a system of two quasilinear equations in the class of bounded, measurable functions
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 10, Tome 69 (1977), pp. 3-18

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is formulated and proved regarding the uniqueness of a generalized solution of Cauchy's for a hyperbolic system consisting of two first-order quasilinear equations with one spatial variable. Admissible solutions are bounded, measurable functions satisfying an additional condition of entropy type.
@article{ZNSL_1977_69_a0,
     author = {\'E. B. Bykhovskii},
     title = {A uniqueness theorem for a generalized solution of a system of two quasilinear equations in the class of bounded, measurable functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {69},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a0/}
}
TY  - JOUR
AU  - É. B. Bykhovskii
TI  - A uniqueness theorem for a generalized solution of a system of two quasilinear equations in the class of bounded, measurable functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 3
EP  - 18
VL  - 69
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a0/
LA  - ru
ID  - ZNSL_1977_69_a0
ER  - 
%0 Journal Article
%A É. B. Bykhovskii
%T A uniqueness theorem for a generalized solution of a system of two quasilinear equations in the class of bounded, measurable functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 3-18
%V 69
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a0/
%G ru
%F ZNSL_1977_69_a0
É. B. Bykhovskii. A uniqueness theorem for a generalized solution of a system of two quasilinear equations in the class of bounded, measurable functions. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 10, Tome 69 (1977), pp. 3-18. http://geodesic.mathdoc.fr/item/ZNSL_1977_69_a0/