A lower bound for the computational complexity of a set of disjunctives in a monotone basis
Zapiski Nauchnykh Seminarov POMI, Theoretical application of methods of mathematical logic. Part II, Tome 68 (1977), pp. 19-25

Voir la notice de l'article provenant de la source Math-Net.Ru

A set of disjunctions of some variables is constructed and a nonlinear lower bound is proved for the circuit complexity of this set in systems of functional elements (s.f.e.) in a fixed monotone basis. The proposed method for proving the lower bound of circuit complexity in the s.f.e. differs from previously known methods (in a monotone basis).
@article{ZNSL_1977_68_a1,
     author = {D. Yu. Grigor'ev},
     title = {A lower bound for the computational complexity of a set of disjunctives in a monotone basis},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {19--25},
     publisher = {mathdoc},
     volume = {68},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_68_a1/}
}
TY  - JOUR
AU  - D. Yu. Grigor'ev
TI  - A lower bound for the computational complexity of a set of disjunctives in a monotone basis
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 19
EP  - 25
VL  - 68
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_68_a1/
LA  - ru
ID  - ZNSL_1977_68_a1
ER  - 
%0 Journal Article
%A D. Yu. Grigor'ev
%T A lower bound for the computational complexity of a set of disjunctives in a monotone basis
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 19-25
%V 68
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_68_a1/
%G ru
%F ZNSL_1977_68_a1
D. Yu. Grigor'ev. A lower bound for the computational complexity of a set of disjunctives in a monotone basis. Zapiski Nauchnykh Seminarov POMI, Theoretical application of methods of mathematical logic. Part II, Tome 68 (1977), pp. 19-25. http://geodesic.mathdoc.fr/item/ZNSL_1977_68_a1/