A class of primality criteria formulated in terms of the divisibility of binomial coefficients
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 167-183

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a class of theorems of the type "$q$ is a prime number iff $R(g)$ is a divisor of the binomial coefficient $\begin{pmatrix}S(q)\\T(q)\end{pmatrix}$"; here $R$, $S$, $T$ are certain fully significant functions that are superpositions of addition, subtraction, multiplication, division, and raising to a power. Similar criteria were also obtained for prime Mersenne numbers, prime Fermat numbers, and twin-prime numbers.
@article{ZNSL_1977_67_a8,
     author = {Yu. V. Matiyasevich},
     title = {A class of primality criteria formulated in terms of the divisibility of binomial coefficients},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--183},
     publisher = {mathdoc},
     volume = {67},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a8/}
}
TY  - JOUR
AU  - Yu. V. Matiyasevich
TI  - A class of primality criteria formulated in terms of the divisibility of binomial coefficients
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 167
EP  - 183
VL  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a8/
LA  - ru
ID  - ZNSL_1977_67_a8
ER  - 
%0 Journal Article
%A Yu. V. Matiyasevich
%T A class of primality criteria formulated in terms of the divisibility of binomial coefficients
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 167-183
%V 67
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a8/
%G ru
%F ZNSL_1977_67_a8
Yu. V. Matiyasevich. A class of primality criteria formulated in terms of the divisibility of binomial coefficients. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 167-183. http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a8/