A remark on Fermat's last theorem
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 223-224

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the equation $x^p+y^p+z^p=0$, $(xyz,p)=1$ has no solutions in rational integers $x$, $y$, $z$ for all odd prime numbers $p$ for which $q=pk+1$ is a prime number, $k\leqslant82$, $k\not\equiv0$ $(\operatorname{mod}3)$.
@article{ZNSL_1977_67_a12,
     author = {A. V. Tolstikov},
     title = {A remark on {Fermat's} last theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {223--224},
     publisher = {mathdoc},
     volume = {67},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a12/}
}
TY  - JOUR
AU  - A. V. Tolstikov
TI  - A remark on Fermat's last theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 223
EP  - 224
VL  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a12/
LA  - ru
ID  - ZNSL_1977_67_a12
ER  - 
%0 Journal Article
%A A. V. Tolstikov
%T A remark on Fermat's last theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 223-224
%V 67
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a12/
%G ru
%F ZNSL_1977_67_a12
A. V. Tolstikov. A remark on Fermat's last theorem. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 223-224. http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a12/