A remark on Fermat's last theorem
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 223-224
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the equation $x^p+y^p+z^p=0$, $(xyz,p)=1$ has no solutions in rational integers $x$, $y$, $z$ for all odd prime numbers $p$ for which $q=pk+1$ is a prime number, $k\leqslant82$, $k\not\equiv0$ $(\operatorname{mod}3)$.
@article{ZNSL_1977_67_a12,
author = {A. V. Tolstikov},
title = {A remark on {Fermat's} last theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {223--224},
publisher = {mathdoc},
volume = {67},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a12/}
}
A. V. Tolstikov. A remark on Fermat's last theorem. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 223-224. http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a12/