Homotopy classification of some four-dimensional manifolds
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part II, Tome 66 (1976), pp. 164-171

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper there is proved a generalization of the results of Whitehead and Pontryagin on the homotopy classification of closed, simply connected four-manifolds. Let $W$ and $M$ be compact four-dimensional simply connected oriented four-manifolds. By $q_w$ is denoted the intersection index on the group H2(W).Basic Result. THEOREM (Extension). Let the groups $H_1(\partial W)$ and $H_1(\partial M)$ be finite and suppose given a homotopy equivalence $f:\partial W\to\partial M$. In order that $f$ can be extended to a homotopy equivalence $(W,\partial W)\to(M,\partial M)$, it is necessary and sufficient that there should exist an isomorphism $\Xi$, such that the diagram $$ \begin{array}{ccc} H_2(W,\partial W) \overset {\partial}\longrightarrow H_1(\partial W) \\ \downarrow\Xi \downarrow f*\\ H_2(M,\partial M) \overset {\partial}\longrightarrow H_1(\partial W) \end{array} $$ is commutative and $\Xi^*q_m=q_w$.
@article{ZNSL_1976_66_a5,
     author = {O. A. Ivanov},
     title = {Homotopy classification of some four-dimensional manifolds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--171},
     publisher = {mathdoc},
     volume = {66},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a5/}
}
TY  - JOUR
AU  - O. A. Ivanov
TI  - Homotopy classification of some four-dimensional manifolds
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 164
EP  - 171
VL  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a5/
LA  - ru
ID  - ZNSL_1976_66_a5
ER  - 
%0 Journal Article
%A O. A. Ivanov
%T Homotopy classification of some four-dimensional manifolds
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 164-171
%V 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a5/
%G ru
%F ZNSL_1976_66_a5
O. A. Ivanov. Homotopy classification of some four-dimensional manifolds. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part II, Tome 66 (1976), pp. 164-171. http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a5/