Shortest paths on convex hypersurfaces of Riemannian spaces
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part II, Tome 66 (1976), pp. 114-132

Voir la notice de l'article provenant de la source Math-Net.Ru

A convex hypersurface $\mathscr F$ in a Riemannian space $M^m$ is part of the boundary of an $m$-dimensional locally convex set. It is established that there exists an intrinsic metric of such a hypersurface $\mathscr F$ and it has curvature which is bounded below in the sense of A. D. Aleksandrov; curves with bounded variation of rotation in $\mathscr F$ are shortest paths in $M^m$. For surfaces in $R^m$ these facts are well known; however, the constructions leading to them are in large part inapplicable to spaces $M^m$. Hence approximations to $\mathscr F$ by smooth equidistant (not necessarily convex) ones and normal polygonal paths, introduced (in the case of $R^3$) by Yu. F. Borisov are used.
@article{ZNSL_1976_66_a2,
     author = {S. V. Buyalo},
     title = {Shortest paths on convex hypersurfaces of {Riemannian} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--132},
     publisher = {mathdoc},
     volume = {66},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a2/}
}
TY  - JOUR
AU  - S. V. Buyalo
TI  - Shortest paths on convex hypersurfaces of Riemannian spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 114
EP  - 132
VL  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a2/
LA  - ru
ID  - ZNSL_1976_66_a2
ER  - 
%0 Journal Article
%A S. V. Buyalo
%T Shortest paths on convex hypersurfaces of Riemannian spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 114-132
%V 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a2/
%G ru
%F ZNSL_1976_66_a2
S. V. Buyalo. Shortest paths on convex hypersurfaces of Riemannian spaces. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part II, Tome 66 (1976), pp. 114-132. http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a2/