Three-dimensional open Riemannian space of nonnegative curvature
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part II, Tome 66 (1976), pp. 103-113
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $V^3$ be a connected three-dimensional open complete Riemannian manifold with nonnegative sectional curvature. It is proved that if at some point all the sectional curvatures are positive, then $V^3$ is diffeomorphic to a Euclidean space $R^3$.
@article{ZNSL_1976_66_a1,
author = {Yu. D. Burago},
title = {Three-dimensional open {Riemannian} space of nonnegative curvature},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {103--113},
publisher = {mathdoc},
volume = {66},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a1/}
}
Yu. D. Burago. Three-dimensional open Riemannian space of nonnegative curvature. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part II, Tome 66 (1976), pp. 103-113. http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a1/