Three-dimensional open Riemannian space of nonnegative curvature
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part II, Tome 66 (1976), pp. 103-113

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V^3$ be a connected three-dimensional open complete Riemannian manifold with nonnegative sectional curvature. It is proved that if at some point all the sectional curvatures are positive, then $V^3$ is diffeomorphic to a Euclidean space $R^3$.
@article{ZNSL_1976_66_a1,
     author = {Yu. D. Burago},
     title = {Three-dimensional open {Riemannian} space of nonnegative curvature},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--113},
     publisher = {mathdoc},
     volume = {66},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a1/}
}
TY  - JOUR
AU  - Yu. D. Burago
TI  - Three-dimensional open Riemannian space of nonnegative curvature
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 103
EP  - 113
VL  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a1/
LA  - ru
ID  - ZNSL_1976_66_a1
ER  - 
%0 Journal Article
%A Yu. D. Burago
%T Three-dimensional open Riemannian space of nonnegative curvature
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 103-113
%V 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a1/
%G ru
%F ZNSL_1976_66_a1
Yu. D. Burago. Three-dimensional open Riemannian space of nonnegative curvature. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part II, Tome 66 (1976), pp. 103-113. http://geodesic.mathdoc.fr/item/ZNSL_1976_66_a1/