All ideals of the ring~$C_A^n$ are principal
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VII, Tome 65 (1976), pp. 149-160

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{ZNSL_1976_65_a7,
     author = {S. V. Khrushchev},
     title = {All ideals of the ring~$C_A^n$ are principal},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--160},
     publisher = {mathdoc},
     volume = {65},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_65_a7/}
}
TY  - JOUR
AU  - S. V. Khrushchev
TI  - All ideals of the ring~$C_A^n$ are principal
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 149
EP  - 160
VL  - 65
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_65_a7/
LA  - ru
ID  - ZNSL_1976_65_a7
ER  - 
%0 Journal Article
%A S. V. Khrushchev
%T All ideals of the ring~$C_A^n$ are principal
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 149-160
%V 65
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_65_a7/
%G ru
%F ZNSL_1976_65_a7
S. V. Khrushchev. All ideals of the ring~$C_A^n$ are principal. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part VII, Tome 65 (1976), pp. 149-160. http://geodesic.mathdoc.fr/item/ZNSL_1976_65_a7/