Series $\sum F(m)q^m$, where $F(m)$ is the number of odd classes of binary quadratic forms of determinant~$-m$
Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 69-79

Voir la notice de l'article provenant de la source Math-Net.Ru

Consideration of the analytic continuation of the Eisenstein series of weight $3/2$ for the group $\Gamma_0(4)$ leads to a new proof of Mordell's formula connecting the values $\chi(\omega)=\sum^\infty_{m=1}F(m)e^{\pi im\omega}$, $\operatorname{Im}\omega>0$, and $\chi(-\frac{1}{\omega})$. The behavior of the function $\chi(\omega)$for $\Gamma_0(4)$is examined by the same method.
@article{ZNSL_1976_64_a6,
     author = {E. P. Golubeva and O. M. Fomenko},
     title = {Series $\sum F(m)q^m$, where $F(m)$ is the number of odd classes of binary quadratic forms of determinant~$-m$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--79},
     publisher = {mathdoc},
     volume = {64},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a6/}
}
TY  - JOUR
AU  - E. P. Golubeva
AU  - O. M. Fomenko
TI  - Series $\sum F(m)q^m$, where $F(m)$ is the number of odd classes of binary quadratic forms of determinant~$-m$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 69
EP  - 79
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a6/
LA  - ru
ID  - ZNSL_1976_64_a6
ER  - 
%0 Journal Article
%A E. P. Golubeva
%A O. M. Fomenko
%T Series $\sum F(m)q^m$, where $F(m)$ is the number of odd classes of binary quadratic forms of determinant~$-m$
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 69-79
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a6/
%G ru
%F ZNSL_1976_64_a6
E. P. Golubeva; O. M. Fomenko. Series $\sum F(m)q^m$, where $F(m)$ is the number of odd classes of binary quadratic forms of determinant~$-m$. Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 69-79. http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a6/