Normal net subgroups of the full linear group
Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 49-54
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for $n\geqslant3$ a net subgroup of the full linear group $G=GL(n,\Lambda)$ over an arbitrary associative ring $\Lambda$ with unity (see [1]) is normal in $G$ if and only if it is a principal congruence subgroup. We also study the case $n=2$, where the situation is, in general, more complicated.
@article{ZNSL_1976_64_a3,
author = {Z. I. Borevich and B. A. Tolasov},
title = {Normal net subgroups of the full linear group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {49--54},
publisher = {mathdoc},
volume = {64},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a3/}
}
Z. I. Borevich; B. A. Tolasov. Normal net subgroups of the full linear group. Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 49-54. http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a3/