Normal net subgroups of the full linear group
Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 49-54

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for $n\geqslant3$ a net subgroup of the full linear group $G=GL(n,\Lambda)$ over an arbitrary associative ring $\Lambda$ with unity (see [1]) is normal in $G$ if and only if it is a principal congruence subgroup. We also study the case $n=2$, where the situation is, in general, more complicated.
@article{ZNSL_1976_64_a3,
     author = {Z. I. Borevich and B. A. Tolasov},
     title = {Normal net subgroups of the full linear group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--54},
     publisher = {mathdoc},
     volume = {64},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a3/}
}
TY  - JOUR
AU  - Z. I. Borevich
AU  - B. A. Tolasov
TI  - Normal net subgroups of the full linear group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 49
EP  - 54
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a3/
LA  - ru
ID  - ZNSL_1976_64_a3
ER  - 
%0 Journal Article
%A Z. I. Borevich
%A B. A. Tolasov
%T Normal net subgroups of the full linear group
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 49-54
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a3/
%G ru
%F ZNSL_1976_64_a3
Z. I. Borevich; B. A. Tolasov. Normal net subgroups of the full linear group. Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 49-54. http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a3/