Birational equivalence of tori with a cyclic splitting field
Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 153-158

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an algebraic torus $T$ with a cyclic splitting field is birationally equivalent over the field of definition to the direct product of certain standard tori. Further, torus $T$ is stably rational over the field of definition if and only if the character modules of these standard tori are free modules.
@article{ZNSL_1976_64_a13,
     author = {A. L. Chistov},
     title = {Birational equivalence of tori with a cyclic splitting field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {153--158},
     publisher = {mathdoc},
     volume = {64},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a13/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - Birational equivalence of tori with a cyclic splitting field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 153
EP  - 158
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a13/
LA  - ru
ID  - ZNSL_1976_64_a13
ER  - 
%0 Journal Article
%A A. L. Chistov
%T Birational equivalence of tori with a cyclic splitting field
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 153-158
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a13/
%G ru
%F ZNSL_1976_64_a13
A. L. Chistov. Birational equivalence of tori with a cyclic splitting field. Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 153-158. http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a13/