Stabilization theorem for the Milnor $K_2$-functor
Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 131-152

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be an associative ring. For every natural number $n$ there is a canonical homomorphism $\Psi_n\colon K_{2,n}(\Lambda)\to K_2(\lambda)$ where $K_2$ is the Milnor functor and $K_{2,n}(\lambda)$ the associated unstable $K$-group. Dennis and Vasershtein have proved that if $n$ is larger than the stable rank of $\Lambda$, $\Psi_n$is an epimorphism. It is proved in the article that if $n-1$ is greater than the stable rank of $\Lambda$, the homomorphism $\Psi_n$ is an isomorphism.
@article{ZNSL_1976_64_a12,
     author = {A. A. Suslin and M. S. Tulenbaev},
     title = {Stabilization theorem for the {Milnor} $K_2$-functor},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--152},
     publisher = {mathdoc},
     volume = {64},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a12/}
}
TY  - JOUR
AU  - A. A. Suslin
AU  - M. S. Tulenbaev
TI  - Stabilization theorem for the Milnor $K_2$-functor
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 131
EP  - 152
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a12/
LA  - ru
ID  - ZNSL_1976_64_a12
ER  - 
%0 Journal Article
%A A. A. Suslin
%A M. S. Tulenbaev
%T Stabilization theorem for the Milnor $K_2$-functor
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 131-152
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a12/
%G ru
%F ZNSL_1976_64_a12
A. A. Suslin; M. S. Tulenbaev. Stabilization theorem for the Milnor $K_2$-functor. Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 131-152. http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a12/