Stabilization theorem for the Milnor $K_2$-functor
Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 131-152
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Lambda$ be an associative ring. For every natural number $n$ there is a canonical homomorphism $\Psi_n\colon K_{2,n}(\Lambda)\to K_2(\lambda)$ where $K_2$ is the Milnor functor and $K_{2,n}(\lambda)$ the associated unstable $K$-group. Dennis and Vasershtein have proved that if $n$ is larger than the stable rank of $\Lambda$, $\Psi_n$is an epimorphism. It is proved in the article that if $n-1$ is greater than the stable rank of $\Lambda$, the homomorphism $\Psi_n$ is an isomorphism.
@article{ZNSL_1976_64_a12,
author = {A. A. Suslin and M. S. Tulenbaev},
title = {Stabilization theorem for the {Milnor} $K_2$-functor},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {131--152},
publisher = {mathdoc},
volume = {64},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a12/}
}
A. A. Suslin; M. S. Tulenbaev. Stabilization theorem for the Milnor $K_2$-functor. Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 131-152. http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a12/