One theorem of Cohn
Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 127-130
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F$ be the field of algebraic functions of one variable over the field of constants $k$, $v$ be a point of field $F/k$, and $A_v$ be the ring of functions not having poles outside point $v$. It is proved that $A_v$ is a $GE_2$-ring if and only if it coincides with the ring $k[x]$ of polynomials of one variable over field $k$.
@article{ZNSL_1976_64_a11,
author = {A. A. Suslin},
title = {One theorem of {Cohn}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {127--130},
publisher = {mathdoc},
volume = {64},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a11/}
}
A. A. Suslin. One theorem of Cohn. Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 127-130. http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a11/