One theorem of Cohn
Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 127-130

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be the field of algebraic functions of one variable over the field of constants $k$, $v$ be a point of field $F/k$, and $A_v$ be the ring of functions not having poles outside point $v$. It is proved that $A_v$ is a $GE_2$-ring if and only if it coincides with the ring $k[x]$ of polynomials of one variable over field $k$.
@article{ZNSL_1976_64_a11,
     author = {A. A. Suslin},
     title = {One theorem of {Cohn}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--130},
     publisher = {mathdoc},
     volume = {64},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a11/}
}
TY  - JOUR
AU  - A. A. Suslin
TI  - One theorem of Cohn
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 127
EP  - 130
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a11/
LA  - ru
ID  - ZNSL_1976_64_a11
ER  - 
%0 Journal Article
%A A. A. Suslin
%T One theorem of Cohn
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 127-130
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a11/
%G ru
%F ZNSL_1976_64_a11
A. A. Suslin. One theorem of Cohn. Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 127-130. http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a11/