Homological determination of $\Gamma$-modules
Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 104-126

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $M$ is a profinitely generated $\Gamma$-module which is free as a module over the ring of $p$-adic integers, then $M$ is determined up to free direct factors by its homology. This result generalizes the theorem on homological determinacy of $p$-adic representations of a cyclic group [Ref. Zh. Mat., 3A, 318 (1971)].
@article{ZNSL_1976_64_a10,
     author = {Yu. S. Sarkisyan and A. V. Yakovlev},
     title = {Homological determination of $\Gamma$-modules},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--126},
     publisher = {mathdoc},
     volume = {64},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a10/}
}
TY  - JOUR
AU  - Yu. S. Sarkisyan
AU  - A. V. Yakovlev
TI  - Homological determination of $\Gamma$-modules
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 104
EP  - 126
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a10/
LA  - ru
ID  - ZNSL_1976_64_a10
ER  - 
%0 Journal Article
%A Yu. S. Sarkisyan
%A A. V. Yakovlev
%T Homological determination of $\Gamma$-modules
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 104-126
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a10/
%G ru
%F ZNSL_1976_64_a10
Yu. S. Sarkisyan; A. V. Yakovlev. Homological determination of $\Gamma$-modules. Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 104-126. http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a10/