A description of the subgroups of the complete linear group that contain the group of diagonal matrices
Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 12-29
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be a field containing at least seven elements. In the group $G=GL(n,K)$ we describe the subgroups containing the group $D$ of all diagonal matrices. This description is given in terms of the concept of a $D$-net subgroup, defined as a subgroup of $G$ composed of matrices $(a_{ij})$ with zero elements $a_{ij}$ in some prescribed cells outside the main diagonal (the set of cells is subordinated to some condition of agreement). The main theorem is: Every subgroup of $G$ containing $D$ is contained between a uniquely determined $D$-net subgroup and its normalizer in $G$. The structure of all subgroups of $G$ containing $D$ is finite and does not depend on the field $K$ (when $\operatorname{card}k\geqslant7$).
@article{ZNSL_1976_64_a1,
author = {Z. I. Borevich},
title = {A description of the subgroups of the complete linear group that contain the group of diagonal matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {12--29},
publisher = {mathdoc},
volume = {64},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a1/}
}
TY - JOUR AU - Z. I. Borevich TI - A description of the subgroups of the complete linear group that contain the group of diagonal matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 1976 SP - 12 EP - 29 VL - 64 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a1/ LA - ru ID - ZNSL_1976_64_a1 ER -
Z. I. Borevich. A description of the subgroups of the complete linear group that contain the group of diagonal matrices. Zapiski Nauchnykh Seminarov POMI, Rings and modules, Tome 64 (1976), pp. 12-29. http://geodesic.mathdoc.fr/item/ZNSL_1976_64_a1/