The Selberg trace formula for $SL(3,\mathbf Z)$
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part II, Tome 63 (1976), pp. 8-66

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the first step toward the generalization of the Selberg trace formula to the case of a rank 2 symmetric space $S$ and a discrete group $\Gamma$ for which the fundamental region $\Gamma\setminus S$ goes to infinity nontrivially appears. For $S$ we use the space $SL(3,\mathbf R)/SO(3)$ and for $\Gamma$ we use $SL(3,\mathbf Z)$. The fundamental results are Theorems 9 and 10, in which is calculated the contribution to the matrix trace of the operator $K$ which appears in the right side of the trace formula of the expression $\int h(\lambda)d\nu^c(\lambda)$, where $\nu^c(\lambda)$ is the continuous part of the spectral measure of the quasiregular representation on the space $L_2(\Gamma\setminus S)$.
@article{ZNSL_1976_63_a1,
     author = {A. B. Venkov},
     title = {The {Selberg} trace formula for $SL(3,\mathbf Z)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {8--66},
     publisher = {mathdoc},
     volume = {63},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_63_a1/}
}
TY  - JOUR
AU  - A. B. Venkov
TI  - The Selberg trace formula for $SL(3,\mathbf Z)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 8
EP  - 66
VL  - 63
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_63_a1/
LA  - ru
ID  - ZNSL_1976_63_a1
ER  - 
%0 Journal Article
%A A. B. Venkov
%T The Selberg trace formula for $SL(3,\mathbf Z)$
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 8-66
%V 63
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_63_a1/
%G ru
%F ZNSL_1976_63_a1
A. B. Venkov. The Selberg trace formula for $SL(3,\mathbf Z)$. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part II, Tome 63 (1976), pp. 8-66. http://geodesic.mathdoc.fr/item/ZNSL_1976_63_a1/