Problem of whispering gallery waves in a neighborhood of a simple zero of the effective curvature of the boundary
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 8, Tome 62 (1976), pp. 197-206
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The mathematical formulation of the problem on the propagation of whispering gallery waves in a neighborhood of a simple zero of the effective curvature of the boundary is given for the principal term of the short-wave asymptotics, and the uniqueness of the solution of this problem is demonstrated.
			
            
            
            
          
        
      @article{ZNSL_1976_62_a15,
     author = {M. M. Popov},
     title = {Problem of whispering gallery waves in a neighborhood of a simple zero of the effective curvature of the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {197--206},
     publisher = {mathdoc},
     volume = {62},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_62_a15/}
}
                      
                      
                    TY - JOUR AU - M. M. Popov TI - Problem of whispering gallery waves in a neighborhood of a simple zero of the effective curvature of the boundary JO - Zapiski Nauchnykh Seminarov POMI PY - 1976 SP - 197 EP - 206 VL - 62 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1976_62_a15/ LA - ru ID - ZNSL_1976_62_a15 ER -
%0 Journal Article %A M. M. Popov %T Problem of whispering gallery waves in a neighborhood of a simple zero of the effective curvature of the boundary %J Zapiski Nauchnykh Seminarov POMI %D 1976 %P 197-206 %V 62 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1976_62_a15/ %G ru %F ZNSL_1976_62_a15
M. M. Popov. Problem of whispering gallery waves in a neighborhood of a simple zero of the effective curvature of the boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 8, Tome 62 (1976), pp. 197-206. http://geodesic.mathdoc.fr/item/ZNSL_1976_62_a15/