Sharpness of bounds of stability for Raikov's theorem
Zapiski Nauchnykh Seminarov POMI, Continuity and stability in the problems of probability theory and mathematical statistics, Tome 61 (1976), pp. 102-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An example is constructed to show that the bounds of stability in the Raikov theorem on the decomposition of the Poisson law cannot be better than $O(\log\log\frac{1}{\varepsilon}/\log\frac{1}{\varepsilon})^2$.
@article{ZNSL_1976_61_a9,
     author = {J. J. Ma\v{c}ys},
     title = {Sharpness of bounds of stability for {Raikov's} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--107},
     year = {1976},
     volume = {61},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_61_a9/}
}
TY  - JOUR
AU  - J. J. Mačys
TI  - Sharpness of bounds of stability for Raikov's theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 102
EP  - 107
VL  - 61
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_61_a9/
LA  - ru
ID  - ZNSL_1976_61_a9
ER  - 
%0 Journal Article
%A J. J. Mačys
%T Sharpness of bounds of stability for Raikov's theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 102-107
%V 61
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_61_a9/
%G ru
%F ZNSL_1976_61_a9
J. J. Mačys. Sharpness of bounds of stability for Raikov's theorem. Zapiski Nauchnykh Seminarov POMI, Continuity and stability in the problems of probability theory and mathematical statistics, Tome 61 (1976), pp. 102-107. http://geodesic.mathdoc.fr/item/ZNSL_1976_61_a9/