Stability for the Marcinkiewicz theorem. Case of a fourth-degree polynomial
Zapiski Nauchnykh Seminarov POMI, Continuity and stability in the problems of probability theory and mathematical statistics, Tome 61 (1976), pp. 107-124
Cet article a éte moissonné depuis la source Math-Net.Ru
A stability estimate is obtained for a special case of a theorem of Marcinkiewicz asserting that if $P_4(t)$ is a fourth-degree polynomial then $P_4(t)$ can be a characteristic function only if the degree of $P_4(t)$ is in fact not greater than 2.
@article{ZNSL_1976_61_a10,
author = {N. A. Sapogov},
title = {Stability for the {Marcinkiewicz} theorem. {Case} of a fourth-degree polynomial},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {107--124},
year = {1976},
volume = {61},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_61_a10/}
}
N. A. Sapogov. Stability for the Marcinkiewicz theorem. Case of a fourth-degree polynomial. Zapiski Nauchnykh Seminarov POMI, Continuity and stability in the problems of probability theory and mathematical statistics, Tome 61 (1976), pp. 107-124. http://geodesic.mathdoc.fr/item/ZNSL_1976_61_a10/