On the approximation of reduction classes of RPC by decidable classes
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 103-108

Voir la notice de l'article provenant de la source Math-Net.Ru

Prenex formulas of RPC are examined; all formulas obtained one from the other by renamings of objective and predicate variables and by deletion of fictitious quantifiers are reckoned to be alike. The number of occurrences of atomic formulas is called the length of a formula; $|M^{(n)}|$ denotes the number of formulas in a set $M$, having length $n$. $M$ is said to be approximatable by deducibility if an algorithmexists which for each positive $\varepsilon$ yields a solvable set $N$ of formulas and a number $n_0$ such that for all $n>n_0|N^{(n)}|/|M^{(n)}|>1-\varepsilon$. The number $\alpha$ is called the deducibility number of the class $A$ of formulas if the sequence $$ \frac{|\widetilde A^{(n)}|}{|A^{(n)}|},\quad n=1,2,3,\dots, $$ where $\widetilde A$ is the set of deducible formulas from $A$, effectively converges to $\alpha$. The deducibility number is found, or, at least, approximatability is proved, for a number of known reduction classes in RPC. Two items of literature are cited.
@article{ZNSL_1976_60_a9,
     author = {S. A. Norgela},
     title = {On the approximation of reduction classes of {RPC} by decidable classes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--108},
     publisher = {mathdoc},
     volume = {60},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a9/}
}
TY  - JOUR
AU  - S. A. Norgela
TI  - On the approximation of reduction classes of RPC by decidable classes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 103
EP  - 108
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a9/
LA  - ru
ID  - ZNSL_1976_60_a9
ER  - 
%0 Journal Article
%A S. A. Norgela
%T On the approximation of reduction classes of RPC by decidable classes
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 103-108
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a9/
%G ru
%F ZNSL_1976_60_a9
S. A. Norgela. On the approximation of reduction classes of RPC by decidable classes. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 103-108. http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a9/