A new proof of the theorem on exponential diophantine representation of enumerable sets
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 75-92
Voir la notice de l'article provenant de la source Math-Net.Ru
A new proof is given for the well-known theorem of Putnam, Davis, and Robinson on exponential diophantine representation of recursively enumerable sets. Starting from the usual definition of r.e. sets via Turing machines, a new method of arithmetization is given. This new method leads directly to a purely existential exponential formula. The new proof may be more suitable for a course on the theory of algorithms because it requires less knowledge of number theory.
@article{ZNSL_1976_60_a7,
author = {Yu. V. Matiyasevich},
title = {A new proof of the theorem on exponential diophantine representation of enumerable sets},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {75--92},
publisher = {mathdoc},
volume = {60},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a7/}
}
TY - JOUR AU - Yu. V. Matiyasevich TI - A new proof of the theorem on exponential diophantine representation of enumerable sets JO - Zapiski Nauchnykh Seminarov POMI PY - 1976 SP - 75 EP - 92 VL - 60 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a7/ LA - ru ID - ZNSL_1976_60_a7 ER -
Yu. V. Matiyasevich. A new proof of the theorem on exponential diophantine representation of enumerable sets. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 75-92. http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a7/