Absorption relation on regular sets
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 65-74
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a regular expression (constructed in the usual manner from the letters of an alphabet $A$ by using the operations $\cdot$, $\vee$ и $\{\}$), $R$ be the corresponding regular (recognizable by a finite automaton) set of words in $A$. For words $P$ and $Q$ from $R$ there is defined a relation $P\prec_RQ$ ($QR$-absorbs $P$) satisfying the following conditions:
1) $P\prec_RP$, $\Lambda\prec_{\{R\}}P$ ($\Lambda$ is the empty word);
2) if $P\prec_{R_1}Q$, then $P\prec_{R_1\vee R_2}Q$, $P\prec_{R_2\vee R_1}Q$, $P\prec_{\{R_1\}}Q$;
3) if $P_1\prec_{R_1}Q_1$ and $P_1\prec_{R_2}Q_2$, then $P_1P_2\prec_{R_1\cdot R_2}Q_1Q_2$;
4) if $P_1\prec_{\{R\}}Q_1$ and $P_2\prec_{\{R\}}Q_2$, then $P_1P_2\prec_{\{R\}}Q_1Q_2$.
THEOREM. For any $R$ and any infinite sequence of words from $R$ there exists an
infinite subsequence such that $P_1\prec_RP_2\prec_RP_3\prec_R\dots$ .
Results of such kind have proved applicable to the proofs of the solvability of certain canonic calculi arising in the modelling of biological evolution.
@article{ZNSL_1976_60_a6,
author = {S. Yu. Maslov},
title = {Absorption relation on regular sets},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {65--74},
publisher = {mathdoc},
volume = {60},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a6/}
}
S. Yu. Maslov. Absorption relation on regular sets. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 65-74. http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a6/