On an approximative version of the notion of constructive analytic function
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 49-58

Voir la notice de l'article provenant de la source Math-Net.Ru

A constructive analytic function f is defined as a pair of form $(A,\Omega)$, where $A$ is a fundamental sequence in some constructive metric space and $\Omega$ is a regulator of its convergence into itself. The pointwise-defined function $f$ corresponding to function $f^*$ turns out to be Bishop-differentiable [2], while the domain of $f^*$ is the limit of a growing sequence of compacta. The derivative of a constructive analytic function and the integral along a curve are defined approximatively. It is proved that the fundamental theorems of constructive complex analysis are valid for such functions. Eight items of literature are cited.
@article{ZNSL_1976_60_a4,
     author = {E. Ya. Dantsin},
     title = {On an approximative version of the notion of constructive analytic function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {60},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a4/}
}
TY  - JOUR
AU  - E. Ya. Dantsin
TI  - On an approximative version of the notion of constructive analytic function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 49
EP  - 58
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a4/
LA  - ru
ID  - ZNSL_1976_60_a4
ER  - 
%0 Journal Article
%A E. Ya. Dantsin
%T On an approximative version of the notion of constructive analytic function
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 49-58
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a4/
%G ru
%F ZNSL_1976_60_a4
E. Ya. Dantsin. On an approximative version of the notion of constructive analytic function. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 49-58. http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a4/