On the quantifier of limiting realizability
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 209-220
Cet article a éte moissonné depuis la source Math-Net.Ru
In the searches for “contentwise”-interesting constructive analogs of the theorems of classiaal mathematics, there occur useful logical connectives occupying an intermediate position between $\underset{\cdot}\exists$ and $\exists$ and between $\underset{\cdot}\vee$ and $\vee$ [$\underset{\cdot}\exists xF$ denotes $\rceil\forall x\rceil F$, and $(F_1\underset{\cdot}\vee F_2)$ denotes $\rceil(\rceil F_1\&\rceil F_2)$]. Two logical connectives of this types, suggested by the theory of limitedly computable (semicomputable) functions and defined in terms of the basic logical connectives of constructive logic, viz., the quantifier $\underset{\to}\exists$ of limiting realizability and the quantifier $\underset{\to}\vee$ oflimiting disjunction, are introduced into consideration in the article. A number of properties are established for these logical connectives.
@article{ZNSL_1976_60_a16,
author = {N. A. Shanin},
title = {On the quantifier of limiting realizability},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {209--220},
year = {1976},
volume = {60},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a16/}
}
N. A. Shanin. On the quantifier of limiting realizability. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 209-220. http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a16/