On the quantifier of limiting realizability
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 209-220

Voir la notice de l'article provenant de la source Math-Net.Ru

In the searches for “contentwise”-interesting constructive analogs of the theorems of classiaal mathematics, there occur useful logical connectives occupying an intermediate position between $\underset{\cdot}\exists$ and $\exists$ and between $\underset{\cdot}\vee$ and $\vee$ [$\underset{\cdot}\exists xF$ denotes $\rceil\forall x\rceil F$, and $(F_1\underset{\cdot}\vee F_2)$ denotes $\rceil(\rceil F_1\\rceil F_2)$]. Two logical connectives of this types, suggested by the theory of limitedly computable (semicomputable) functions and defined in terms of the basic logical connectives of constructive logic, viz., the quantifier $\underset{\to}\exists$ of limiting realizability and the quantifier $\underset{\to}\vee$ oflimiting disjunction, are introduced into consideration in the article. A number of properties are established for these logical connectives.
@article{ZNSL_1976_60_a16,
     author = {N. A. Shanin},
     title = {On the quantifier of limiting realizability},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {209--220},
     publisher = {mathdoc},
     volume = {60},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a16/}
}
TY  - JOUR
AU  - N. A. Shanin
TI  - On the quantifier of limiting realizability
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 209
EP  - 220
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a16/
LA  - ru
ID  - ZNSL_1976_60_a16
ER  - 
%0 Journal Article
%A N. A. Shanin
%T On the quantifier of limiting realizability
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 209-220
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a16/
%G ru
%F ZNSL_1976_60_a16
N. A. Shanin. On the quantifier of limiting realizability. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 209-220. http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a16/