On the quantifier of limiting realizability
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 209-220
Voir la notice de l'article provenant de la source Math-Net.Ru
In the searches for “contentwise”-interesting constructive analogs of the theorems
of classiaal mathematics, there occur useful logical connectives occupying
an intermediate position between $\underset{\cdot}\exists$ and $\exists$ and between $\underset{\cdot}\vee$ and $\vee$ [$\underset{\cdot}\exists xF$ denotes
$\rceil\forall x\rceil F$, and $(F_1\underset{\cdot}\vee F_2)$ denotes $\rceil(\rceil F_1\\rceil F_2)$]. Two logical connectives of this types,
suggested by the theory of limitedly computable (semicomputable) functions and
defined in terms of the basic logical connectives of constructive logic, viz., the
quantifier $\underset{\to}\exists$ of limiting realizability and the quantifier $\underset{\to}\vee$ oflimiting disjunction,
are introduced into consideration in the article. A number of properties are
established for these logical connectives.
@article{ZNSL_1976_60_a16,
author = {N. A. Shanin},
title = {On the quantifier of limiting realizability},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {209--220},
publisher = {mathdoc},
volume = {60},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a16/}
}
N. A. Shanin. On the quantifier of limiting realizability. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VII, Tome 60 (1976), pp. 209-220. http://geodesic.mathdoc.fr/item/ZNSL_1976_60_a16/