Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 9, Tome 59 (1976), pp. 133-177

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove existence theorems for the solutions of initial- and boundary-value problems for different linear and quasilinear systems of third-order equations which generalize the Navier–Stokes equations and which are model equations for the description of the flow of well-determined classes of non-Newtonian fluids possessing relaxational properties. We also prove existence theorems and stability theorems on an arbitrary finite time interval of the solutions of initial-and boundary-value (IBV) problems for the alternative model of the Korteweg–de Vries equation.
@article{ZNSL_1976_59_a6,
     author = {A. P. Oskolkov},
     title = {Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--177},
     publisher = {mathdoc},
     volume = {59},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a6/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 133
EP  - 177
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a6/
LA  - ru
ID  - ZNSL_1976_59_a6
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 133-177
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a6/
%G ru
%F ZNSL_1976_59_a6
A. P. Oskolkov. Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 9, Tome 59 (1976), pp. 133-177. http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a6/