Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 9, Tome 59 (1976), pp. 133-177
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove existence theorems for the solutions of initial- and boundary-value problems for different linear and quasilinear systems of third-order equations which generalize the Navier–Stokes equations and which are model equations for the description of the flow of well-determined classes of non-Newtonian fluids possessing relaxational properties. We also prove existence theorems and stability theorems on an arbitrary finite time interval of the solutions of initial-and boundary-value (IBV) problems for the alternative model of the Korteweg–de Vries equation.
@article{ZNSL_1976_59_a6,
author = {A. P. Oskolkov},
title = {Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {133--177},
publisher = {mathdoc},
volume = {59},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a6/}
}
TY - JOUR AU - A. P. Oskolkov TI - Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids JO - Zapiski Nauchnykh Seminarov POMI PY - 1976 SP - 133 EP - 177 VL - 59 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a6/ LA - ru ID - ZNSL_1976_59_a6 ER -
%0 Journal Article %A A. P. Oskolkov %T Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids %J Zapiski Nauchnykh Seminarov POMI %D 1976 %P 133-177 %V 59 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a6/ %G ru %F ZNSL_1976_59_a6
A. P. Oskolkov. Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 9, Tome 59 (1976), pp. 133-177. http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a6/